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spectrum estimators are suggested, consisting of a circular array predicting to its center point, and a
new "thermal noise" algorithm.
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NONLINEAR SPECTRAL ANALYSIS AND ADAPTIVE ARRAY

SUPERRESOLUTION TECHNIQUES

INTRODUCTION

Nonlinear spectral analysis techniques are currently of intense interest because of
reported "superresolution" capabilities beyond the conventional periodogram or the
Blackman-Tukey windowed Fourier transform [1] . Two methods, in particular, which have
demonstrated a considerable increase in resolution are the maximum entropy spectral analy-
sis (MESA) technique introduced by J. P. Burg [2,3], and the maximum likelihood method
(MLM) demonstrated by J. Capon [4-6]. Since these techniques are most significant when
processing short data sets, it is natural to consider their use for RF array antennas with a
modest number of elements [7,8].

Adaptive processing techniques have been associated with these spectral estimation
methods to some extent [9-11] , but the literature indicates that cross-fertilization has been
rather sparse. This situation is surprising, because both MESA and MLM bear a very close
relationship to nonlinear adaptive array processing techniques. It is the purpose of this
report to relate the MESA and MLM methods to their similar adaptive array antenna coun-
terparts. The comparison analysis permits an examination of their principles of operation
from the antenna array spatial pattern viewpoint, and helps to qualify their superresolution
performance behavior. The real-time adaptive resolution of two incoherent sources located
within a beamwidth has been simulated, and results are presented over an array output
signal-to-noise ratio (SNR) range of 0 to 40 dB. The difficulties involved in resolving more
than two closely spaced sources are also treated.

In addition to a discussion on the similarities between MESA, MLM, and adaptive array
processing, some attention is given to the significant differences, which include the matter
of two-dimensional data and the particular manner of averaging or estimating interelement
signal correlations.

Alternate techniques for estimating spatial spectra have suggested themselves during
the course of this study, and two of these are briefly described in the section on alternate
adaptive processing (pp. 19, 20): phase center prediction utilizing a circular array, and a
new adaptive "thermal noise" algorithm.

BURG MESA LINEAR PREDICTION FILTER

The Burg MESA method has been shown by van den Bos [12] to be equivalent to
least mean square (LMS) error linear prediction. It runs a K-point linear prediction filter
across a data sequence of N samples, where N should be at least twice the value of K. In the
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discrete filter diagram of Fig. 1, an optimum K-point prediction filter predicts the nth value
of the sequence from K past values,

K

n= > Al Xnk,

k=1
(1)

where Xk is the predicted sample, the Aft are optimum weighting coefficients, and the K
past samples of Xfl , are presumed known. To define the difference between this predicted
value and the current true value of Xn as the error en, which is to be LMS minimized, we set

e =X _ X
n n nt

We minimize the total squared error E over the complete data sequence of N samples,

N-I

E = v e n

n=K

and

3E
= 0, 1 R $ • K,

(2)

(3)

(4)

thus obtaining a set of K equations in K unknowns, i.e., the Ak filter weights,

K

E Ak hi=-%.i
k=1

N-1

Ok= S
n=k

1 < X < X

Xn-k X ni -

There are several different techniques, including Burg's, for manipulating this set of equa-
tions to solve for the optimum Ah filter weights, and Ref. 1 is recommended if the reader is
interested in pursuing the details further. When this error has been minimized, its power
spectrum will be equivalent to "white" noise. Thus, the uncertainty in en has been
maximized, hence we have a maximum entropy filter.

2
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Fig. 1-Maximum-entropy filter with one-step linear
prediction estimator

Upon substituting Eq. (1) into Eq. (2), we readily see that we have the form of a
discrete convolution

K

e,= - E Ak X,-k I

k=O

where AO = -1. The associated Z-transforms may be written,

&(Z) = (1- Akt )

where the expression within the parentheses may be defined as the filter transform function
H(Z),

(Z) [= [ ZA, ]Z J

or

&(Z) = H(Z) X(Z).
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Note that H(Z) is a polynomial in Z which will have K roots or zero factors. Since "white"
noise has a power spectrum known to be equal to a constant, then from Eq. (10) it is evi-
dent that we can solve for our unknown input power spectrum if the filter function is
known, i.e.,

I Xow; 12 = [ &(C) 12 - (constant)

rIn (1 k e-jw) I

ki=1

(11)

where the peaks (poles) of the unknown power spectrum will occur at the zeros of the filter
function. This permits us to model the input sequence with the powerful, discrete, all-pole,
linear prediction filter illustrated in Fig. 2, both in the frequency domain and in the time
domain. The prediction filter is driven by white noise.

If one considers the action of such a filter upon sinusoids corrupted with a small
amount of noise, it is evident that the filter can synchronize with even a short section of the
sampled time waveform of the sinusoids and, once synchronized, can then proceed to
"predict" many additional samples of the waveform with little error.

( .X(Z
(a) Frequency domain - -

Xr

(b) Time domain

Fig. 2-Discrete all-pole linear prediction filter model
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Another aspect of this filter is that it is a deconvolution filter, so-called because it
estimates the unknown spectrum directly from the reciprocal of the filter transform func-
tion. Note in Eq. (10) that the error spectrum results from a simple multiplication of the
unknown spectrum with the filter function, and that no convolution of the two occurs. In
the conventional windowed Fourier transform method, on the other hand, the unknown
spectrum is estimated by convolving the spectrum with the window filter transform func-
tion, and the convolution usually smears or destroys the fine detail of peaked spectra.

Reference I is recommended for those readers who want additional information on
spectrum estimation filters.

LINEAR PREDICTION FILTERS AND ADAPTIVE SIDELOBE CANCELLERS

Conversion of the above MESA linear prediction filter to a weighted linear array of
spatial sensors is straightforward, with the simplest configuration illustrated in Fig. 3. The
element signal samples will be correlated in both space and time, giving rise to a two-
dimensional data problem, but we convert this to spatial domain only by assuming that
narrowband filtering precedes our spatial domain processing. For example, one could
perform fast Fourier transform (FFT) on the element data prior to spatial processing. Also,
we assume that our elements are equally spaced.

The nth "snapshot" signal sample at the kth element will consist of independent
Gaussian receiver noise tk n plus I incoherent source voltages,

I

Ek=n = n + fekutin ) 1 < k < K, (12)

where d
Uit = 2rT (-i-) sin Oi

d = element spacing, assumed near X/2

X = wavelength

0i = spatial location angle of ith source

Ji = amplitude of ith sourcet

0 = random phase of ith source, nth sample

k = element index

n = snapshot sample index.

A "snapshot" is defined as one simultaneous sampling of the aperture signals at all array
elements, and we assume that N snapshots of data are available.

tJi has a constant rather than random amplitude because of a concurrent measurement program involving
CW sources sampled at random times.
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A brief examination of Fig. 3 from the standpoint of adaptive arrays leads to the con-
clusion that it is identical in configuration to a special subclass commonly referred to in the
literature as a sidetobe canceller [ 13,141. A typical sidelobe canceller configuration from
Applebaum [141 is illustrated in Fig. 4. For the benefit of those who may not be familiar
with them, it should be noted that the unweighted main-beam "element" is usually different
and of much higher gain than the others, and the elements may or may not be equally
spaced. They are designed to be operated on the basis of many successive snapshots (as-
suming digital operation) because their environment generally involves weak desired signals
and an abundance of interference source data. They are a prediction filter in the sense that,
after convergence, they are predicting the signal at the phase center of the main-beam
element.

The adaptive sidelobe canceller is pertinent to our linear prediction filter because its
spatial filter pattern analysis is well developed and can be applied directly to achieve a better
understanding of the superresolution performance behavior. A further point is that real-time
operation is readily achieved via most of the current adaptive algorithms, provided that the
number of snapshots is enough to reach convergence in whitening a. Convergence may
require as few as two snapshots or as many as several thousand, depending on the particular
algorithm and the parameters of the source distribution. Several examples will be discussed.

SPATIAL FILTER PATTERNS

The spatial filter function for the array of Fig. 3 is simply the adapted pattern after
convergence, which is commonly referred to as the steady-state adapted pattern and may
readily be computed from the inverse of the sample covariance matrix (141,

W, = AM-lS* (13)

S = |,0,0,0,0,0,0,11 (14}

N
M ZM (1SKN n

n=1

Mn = En - Et],>

where E. is the nth "snapshot" signal sample vector whose components are given by Eq.
(12), Mn is the nth snapshot contribution to the covariance matrix, M is the sample
covariance matrix averaged over N shapshots, S* is the quiescent weight steering vector, P is
a scalar quantity, and W. is the optimum weight vector. Note that the steering vector S*
injects zero weight on every element except for the end element, causing the quiescent
pattern of the array to be that of the single end element.
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Fig. 3-Array aperture linear prediction spatial filter model
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Fig. 4-Typical adaptive array sidelobe canceller configuration
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Figure 5 shows a typical quiescent (single-element) pattern and an adapted pattern
obtained from an 8-element linear array with two far-field, incoherent, 30-dB sources
located at 18' and 220. The adapted pattern weights were computed per Eq. (13) from the
inverse of the covariance matrix averaged over 1024 simulated snapshots. Note that the two
pattern nulls (zeros) align perfectly with the locations of the two sources. Of course, the
array signals in this simulation were corrupted only by receiver noise (no element errors
are included), and an average over 1024 snapshots is indeed steady state. Another important
point to note is that nulls in such an adapted pattern may be located arbitrarily close
together in terms of beamwidth, without violating any physical principle. Yet, because the
nulls have served to locate two sources within a beamwidth, one may describe this as a
"'superresolution" pattern.

It is readily shown that this adapted pattern is obtained by subtracting the summed
array output pattern from the element (main beam) pattern and, furthermore, that the
summed array pattern consists of properly weighted "eigenvector beams" [15J. In terms of
the eigenvector weights, we can express the optimum weights in the form,

Wo = S* E(B i +B ) jqei 17vv~~~~(i )(17)

Wg -i (Iest S*)

where ej is the ith eigenvector of the covariance matrix, B, is the ith eigenvalue, and B0 is
the smallest eigenvalue corresponding to receiver noise power. Note that only the significant
eigenvectors corresponding to Ri >B. need be considered here. An adaptive array forms
one such eigenvector beam for each degree of freedom consumed in nulling out the spatial
source distribution. Figure 6 shows the two eigenvector beams required for this two-source
example. It should be emphasized here that the true resolution and signal gain of the array
are reflected in these eigenvector beams. They demonstrate the importance of having as
wide an aperture as possible because the superresolution capability in the adapted pattern
is a percentage of the true resolution of these beams. Also, since the superresolution nulls
are formed by subtracting these beams of conventional width, it follows that the nulls
will be rather delicate and very sensitive to system imperfections and signal fluctuations.

The desired "spatial spectrum pattern" is then obtained from Eq. (11) as simply the
inverse of the adapted pattern. Figure 7 shows this inverse for the two-source example and
compares it with the output of a conventional beam scanned through the two sources.
Several comments are in order concerning such inverse patterns.

1. They are not true antenna patterns because there is no combination of the element
weights that could produce such a peaked spatial pattern. They are simply a function com-
puted from the reciprocal of a true antenna pattern.

2. Linear superposition does not hold in either the inverse or the original adapted pat-
tern because of the nonlinear processing involved in the inverse of the covariance matrix
(or the equivalent),

8
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REAL-TIME FILTER OPERATION

To get a feel for real-time operation performance with realistic weight update aver-
aging, we ran simulations in which an eight-element array had its weights computed from
the simple Howells-Applebaum algorithm in recursive digital form as diagrammed in Fig. 8.
The associated recursive relationship for the kth weight may be written

(1 + ii Wk(n) = TWk(n - 1) + S (n) - ({ E (n) Y(n) (18)

where

K

Y(n) =E Ek~(n) Wk (n - 1). (19)
k=1

Y(n) is the current array output, Ekf(n) is the current snapshot signal sample at the kth
element (similar to Eq. (12)), Wk(n-l) is the previous value of the kth weight, Sk (n) is the
injected kth beam-steering weight, and B. is a constant equal to receiver noise power.

The digital integration loop shown in Fig. 8 is designed to simulate a simple low-pass
RC filter with a time constant of r, but we choose to make r dynamic to get faster con-
vergence for most situations. Thus, let r become r(n),

T(n) = To + TP(fn) (20)

where

T = high-power, fast time constant

To = quiescent conditions, slow time constant

Prtn) = snapshot SNR (power ratio).

This formulation permits us to satisfy the 10% bandwidth criterion at high power levels to
avoid noisy weights [15] by choosing the value of T = 3.2, and yet the quiescent condition
time constant need be no worse than ro = 200. The larger value for To is necessary in order
to have a relatively stable quiescent pattern. Actual weight update averaging is performed in
accordance with the reciprocal of the closed-loop bandwidth as,

11
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Fig. 9-Time-sequence snapshot output of array in decibels above receiver noise power;
Howells-Applebaum recursive algorithm with dynamic time constant

any of the snapshot weight sets can be used to compute the spatial spectrum. Figure 10
shows the spatial spectrum plots associated with snapshots 100, 200, and 300. In comparing
Fig. 10 against Fig. 7, note that the pattern has changed very little, in spite of the fact that
the integration or averaging has been reduced by two orders of magnitude, i.e., from a value
of 1024 snapshots in Fig. 7 to about 3 snapshots in Fig. 10 (albeit a decaying average in-
herent in the low-pass filter). The greatest effect of this reduced averaging is that the heights
of the peaks are reduced and the peaks fluctuate from snapshot to snapshot because of the
perturbation of the noise on each snapshot weight update.

In rounding out the example of these two incoherent sources spaced 4° apart (about
0.27 beamwidths apart), Fig. 11 illustrates what happens as we reduce the SNR strength
of the sources. Figure ha at 20 dB shows increasing peak fluctuations in magnitude, which
merely reflect the null fluctuations in the adapted pattern, although the spatial locations
of the sources are still accurate. Figure Rib at 10 dB shows even greater fluctuations in peak
magnitude, but now the patterns are deteriorating in both shape and peak locations, indi-
cating that the resolution capability is nearing its limit, i.e., if the source power levels are
reduced further, then the adaptive array can no longer resolve them accurately at that
particular spacing.
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Fig. 11-Typical spatial spectrum snapshot plots after convergence. Two
sources located at 18' and 22°
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described by Alam [11,17J]. Figure 13 shows the resolution of the three sources via the
Gram-Schmidt algorithm, but it should be noted that, even with this fast algorithm, resolu-
tion was not achieved until after 200 snapshots and the locations of the peaks fluctuates
considerably. This was a good illustration of the "delicacy" of null formation for the case
of closely spaced multiple sources.

MLM AND ADAPTIVE DIRECTIONAL CONSTRAINTS

The maximum likelihood spectral estimate is defined as a filter designed to pass the
power in a narrow band about the signal frequency of interest and minimize or reject all
other frequency components in an optimal manner [4,5] . This is identical to the use of a
zero-order main-beam directional gain constraint in adaptive arrays [18,19], where the
"spatial spectrum" would be estimated by the output residual power PO from the optimized
adapted array weights,

PI= WItMWO (22)

where

W, = pM- 1 S*(optimized weights)

M = covariance matrix estimate

S* = main-beam direction-steering vector

p = scalar quantity.

Under the zero-order gain constraint, we require StW0 = 1, whereupon p becomes

P = (StMIlS*rl. (23)

Substituting p and WO into Eq. (22), then, results in

Po StM 1S* (24)

Upon sweeping the steering vector S * for a given covariance matrix inverse, Po will estimate
the spatial spectrum. Interestingly, this result is identical (within a constant) to the spec-
trum obtained from the inverse of the output residual power from an unconstrained
optimized adapted array.

17
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Fig. 14-MLM spatial spectrum plotted from residual power of adaptive zero-order
main-beam constraint for the two-source case of Fig, 5

3. The output of this filter is a real signal, and if the filter passboand is steered to a
particular source, one can monitor that source at full array gain while rejecting outputs of
all other sources.

4. The residual background spatial ripple is very low and well behaved.

5. It is not necessary to have the elements equally spaced. Thus, one should take
advantage of this property to spread them out for a wider aperture and substantially in-
crease the resolution for a given number of elements. (This is done in the field of geophysics
[41 .} If this is done, it is very likely that this method could equal or surpass the resolution
of the previous technique.

ALTERNATE ADAPTIVE PROCESSING FOR SPATIAL SPECTRA

Phase Center Prediction

The adaptive array processing described in the fourth section did not use the configura-
tion of Fig. 3 in the true sense of a K-point linear prediction filter that runs across a larger
aperture of data samples. The K elements involved were the total aperture, and a series of
N snapshots of data were used to estim ate or predict the signal at the phase center of the
unweighted main-beam element. Phase-center prediction of this type is very flexible in that

19
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Fig. 15-"Thermal noise" algorithm spatial spectrum plotted for the two-source
case of Fig. 5

SIGNIFICANT PROCESSING DIFFERENCES

Although the similarities are extensive enough to create a favorable climate for
technique interchanges, there are also some significant differences which arise from the very
nature of the applications and their data. For example, assume that we utilize the Burg
MESA technique to run a K-point prediction filter across an RF aperture of M elements,
where K must be smaller than M by at least 50% in order to obtain a reasonable averaged
estimate for determination of the K filter weights. This type of processing has a great
advantage in being able to operate with a single snapshot of element data, but it is "unthink-
able" from an RF array point of view because it is wasting expensive aperture elements.
It is far more preferable to operate on the basis of many snapshots of data from the smallest
number of elements possible. In fact, a recent study of the Burg MESA technique by King
[8], as applied to an RF spatial array, found that single snapshot results were seldom
satisfactory, and that it was usually necessary to average the results from 10 or 20 snapshots
in order to achieve a stable spectrum estimate. This comment is not meant to imply that
the Burg technique is not applicable, but only that single-snapshot operation is not very
practical for RF arrays.

A related difference is simply the fact that RF armay element signal samples are cor-
related in both space and time, thus giving rise to a two-dimensional data problem [7] that
does not exist in spectrum analysis. To overcome this problem usually requires filtering
in both domains. For example, one may handle the time domain via tapped delay lines, an
FFT operation, or actual narrowband filters at each array element. Note that, in each case,

21
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The adaptive array counterpart is naturally suited to real-time spectral estimation via
most of the current adaptive algorithms, and the case of two incoherent sources located
within a beamwidth was simulated over a SNR range of 0 to 40 dB. A universal super-
resolution performance curve, Fig. 12, was developed for this particular case, which can
be utilized for linear arrays of any number of elements. If there are more than two sources
within a beamwidth, difficulties mount rapidly and the filter null points may not accurately
represent source locations.

In addition to the direct adaptive counterparts, two alternate adaptive spatial spectrum
estimators were suggepsted. One is a circular array aperture arrangement which predicts to
the center of the circle, and the other is a new adaptive "thermal noise" algorithm which
appears to possess an interesting combination of both MESA and MLM characteristics.

There are some significant differences between spectral analysis techniques and adap-
tive array techniques that relate to the nature of their applications and the two-dimensional
data problem. However, it appears that there is much to be gained through careful analysis
of the other's techniques. For example, in addition to the obvious applications in target
detection, DF (direction finding) systems, and source classification, spectral analysis
techniques should be of benefit in data extension and coherence effects investigations.
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